for HF Antennas

Here is a simple antenna calculator for two popular forms of ham radio HF wire antennas: the horizontal dipole and the inverted "V".

**FTC Required Disclosure: **If
you make a purchase via a link on this site, I may receive a small
commission on the transaction - at no added cost to you. Thank you!

for

Half-Wave Dipoles

Enter your desired frequency (MHz) of operation (i.e. 3.55). If you have no particular preference within a given ham radio band, then simply enter its center frequency (i.e. 7.15 for the 40 meter band).

To fully understand the results obtained by this calculator, please take a few minutes to read the explanation below it.

Here is how to interpret the resulting wire lengths given by the calculator.

Be prepared to trim the ends of the inverted V dipole if the final
frequency of resonance ends up being too low for your needs when the inverted V is
installed in its *permanent position*.

The most widely used formula to calculate the approximate overall length of wire required for a **dipole** is:**468 / frequency (MHz) = length of wire in feet.**

The antenna calculator above uses this formula as a starting point to calculate wire lengths for the dipole. The results are conveniently displayed in inches, centimeters, feet and meters.

This formula to obtain the length of a half-wave dipole antenna will give a good ballpark value to start with.

However, the *actual* resulting frequency of resonance and feed-point impedance of a dipole will depend on:

- The
*height*of the dipole above ground; - The
*conductivity*of the ground below; - The
*dielectric constant*of the ground below; - The presence of buildings, trees, metal structures (tower) nearby.

When each side of a dipole slopes down from the feed point, it is commonly called an *inverted V*.

The **inverted V** results in:

- A more omni-directional radiation pattern than that of a dipole.
- A
*higher resonant frequency*for the same length of wire as the dipole. - A
*lower*feed point impedance than the horizontal dipole (for feed points at the same height above ground). - Some
*loss*in bandwidth.

Some say that the *inverted V*
should be cut 4-5% shorter than the dipole! But if one were to actually do
that, the inverted V would resonate at an even higher frequency!

In fact, if you intend to install an *inverted V*, the antenna
calculator above will give you a wire length which will be 5% longer
than that of a dipole at the same desired frequency of operation. This
will give you some leeway to trim the wire ends back if the *inverted V* resonates too low for your purpose when installed in its final position.

The formula used by the calculator to compute the wire lengths for the *inverted V* is based on the formula for a half-wave dipole. It is adjusted to take into account the special characteristics of the inverted V.

In the case of the *inverted V* we must add - to the list of environmental variables influencing the half-wave dipole - the angle between the two legs of the *inverted V*.

The angle below the two sections of a horizontal dipole is 180 degrees. As the two sections of the dipole are lowered below the feed point, the angle between the two legs decreases:

- The
*resonant frequency*of the*inverted V*rises. - The influence of the ground conductivity and dielectric constant becomes an
*increasing factor*.

NOTE: if you start by giving the calculator your *desired* frequency of operation, the inverted V - when installed in its *final* position - may be still end up too short or too long, depending on the environmental conditions mentioned above.

- If the antenna is too long (resonates below your desired frequency) then it's not a problem: you just trim each leg a little at a time until you reach lowest SWR.

Note: To avoid cutting the wire, I usually just fold back each end of the antenna wire on itself and tape it tight if it's insulated wire - or twist it back on itself if you are using bare wire. - But if the antenna is too short (resonates above your desired frequency) then it's a little more trouble to
*add*wire to each leg to bring down its frequency of resonance where you want it.

To avoid the latter outcome, the antenna calculator above is set up to compensate somewhat for local adverse environmental conditions. The length it will calculate will likely be a little too long. You will only have to trim it a few inches at a time to bring the frequency of resonance up to where you want it.

For more detailed information on ham radio HF wire antennas, please visit this section of our Web site.

**Furthermore...**

If the angle between the two legs of the *inverted V* becomes *less* than 90 degrees, the radiation patterns from each leg of the *inverted V* begin to interact and cancel each other to some extent.**Therefore, the angle between the two legs of an inverted V should not be less than 90 degrees.**

Remember, an inverted V requires slightly more wire than a horizontal dipole for a given frequency of resonance.

The antenna calculator above will provide appropriate wire lengths for the *inverted V* and the dipole for a given frequency of your choice.

73 de VE2DPE

Claude Jollet

7, Rue de la Rive, Notre-Dame-des-Prairies, Québec, Canada J6E 1M9

QTH Locator: FN36gb

**FTC Required Disclosure: **

If
you make a purchase via a link on this site, I may receive a small
commission on the transaction - at no added cost to you. Thank you!

**FOUND THISSITEUSEFUL?**

Contents

**VE2DPEIs a member in good standingof**

Also a proud member of an international community of *solopreneurs*

using * SoloBuildIt!*(SBI!)

to promote my self-published eBooks

since 2005.

See my review

of this unique product for online businesses.

**CQ CQ CQ
**

If you have a question, a comment or a topic you would like me to cover, *please* do not hesitate to ask **here**.